3.419 \(\int \frac {(a+b x^2)^{9/2}}{x^5} \, dx\)

Optimal. Leaf size=126 \[ -\frac {63}{8} a^{5/2} b^2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )+\frac {63}{8} a^2 b^2 \sqrt {a+b x^2}+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}+\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4} \]

[Out]

21/8*a*b^2*(b*x^2+a)^(3/2)+63/40*b^2*(b*x^2+a)^(5/2)-9/8*b*(b*x^2+a)^(7/2)/x^2-1/4*(b*x^2+a)^(9/2)/x^4-63/8*a^
(5/2)*b^2*arctanh((b*x^2+a)^(1/2)/a^(1/2))+63/8*a^2*b^2*(b*x^2+a)^(1/2)

________________________________________________________________________________________

Rubi [A]  time = 0.08, antiderivative size = 126, normalized size of antiderivative = 1.00, number of steps used = 8, number of rules used = 5, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.333, Rules used = {266, 47, 50, 63, 208} \[ \frac {63}{8} a^2 b^2 \sqrt {a+b x^2}-\frac {63}{8} a^{5/2} b^2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}+\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2} \]

Antiderivative was successfully verified.

[In]

Int[(a + b*x^2)^(9/2)/x^5,x]

[Out]

(63*a^2*b^2*Sqrt[a + b*x^2])/8 + (21*a*b^2*(a + b*x^2)^(3/2))/8 + (63*b^2*(a + b*x^2)^(5/2))/40 - (9*b*(a + b*
x^2)^(7/2))/(8*x^2) - (a + b*x^2)^(9/2)/(4*x^4) - (63*a^(5/2)*b^2*ArcTanh[Sqrt[a + b*x^2]/Sqrt[a]])/8

Rule 47

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + 1)), x] - Dist[(d*n)/(b*(m + 1)), Int[(a + b*x)^(m + 1)*(c + d*x)^(n - 1), x], x] /; FreeQ[{a, b, c, d},
x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && LtQ[m, -1] &&  !(IntegerQ[n] &&  !IntegerQ[m]) &&  !(ILeQ[m + n + 2, 0
] && (FractionQ[m] || GeQ[2*n + m + 1, 0])) && IntLinearQ[a, b, c, d, m, n, x]

Rule 50

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*(c + d*x)^n)/(b*
(m + n + 1)), x] + Dist[(n*(b*c - a*d))/(b*(m + n + 1)), Int[(a + b*x)^m*(c + d*x)^(n - 1), x], x] /; FreeQ[{a
, b, c, d}, x] && NeQ[b*c - a*d, 0] && GtQ[n, 0] && NeQ[m + n + 1, 0] &&  !(IGtQ[m, 0] && ( !IntegerQ[n] || (G
tQ[m, 0] && LtQ[m - n, 0]))) &&  !ILtQ[m + n + 2, 0] && IntLinearQ[a, b, c, d, m, n, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {\left (a+b x^2\right )^{9/2}}{x^5} \, dx &=\frac {1}{2} \operatorname {Subst}\left (\int \frac {(a+b x)^{9/2}}{x^3} \, dx,x,x^2\right )\\ &=-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{8} (9 b) \operatorname {Subst}\left (\int \frac {(a+b x)^{7/2}}{x^2} \, dx,x,x^2\right )\\ &=-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{16} \left (63 b^2\right ) \operatorname {Subst}\left (\int \frac {(a+b x)^{5/2}}{x} \, dx,x,x^2\right )\\ &=\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{16} \left (63 a b^2\right ) \operatorname {Subst}\left (\int \frac {(a+b x)^{3/2}}{x} \, dx,x,x^2\right )\\ &=\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{16} \left (63 a^2 b^2\right ) \operatorname {Subst}\left (\int \frac {\sqrt {a+b x}}{x} \, dx,x,x^2\right )\\ &=\frac {63}{8} a^2 b^2 \sqrt {a+b x^2}+\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{16} \left (63 a^3 b^2\right ) \operatorname {Subst}\left (\int \frac {1}{x \sqrt {a+b x}} \, dx,x,x^2\right )\\ &=\frac {63}{8} a^2 b^2 \sqrt {a+b x^2}+\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}+\frac {1}{8} \left (63 a^3 b\right ) \operatorname {Subst}\left (\int \frac {1}{-\frac {a}{b}+\frac {x^2}{b}} \, dx,x,\sqrt {a+b x^2}\right )\\ &=\frac {63}{8} a^2 b^2 \sqrt {a+b x^2}+\frac {21}{8} a b^2 \left (a+b x^2\right )^{3/2}+\frac {63}{40} b^2 \left (a+b x^2\right )^{5/2}-\frac {9 b \left (a+b x^2\right )^{7/2}}{8 x^2}-\frac {\left (a+b x^2\right )^{9/2}}{4 x^4}-\frac {63}{8} a^{5/2} b^2 \tanh ^{-1}\left (\frac {\sqrt {a+b x^2}}{\sqrt {a}}\right )\\ \end {align*}

________________________________________________________________________________________

Mathematica [C]  time = 0.01, size = 39, normalized size = 0.31 \[ -\frac {b^2 \left (a+b x^2\right )^{11/2} \, _2F_1\left (3,\frac {11}{2};\frac {13}{2};\frac {b x^2}{a}+1\right )}{11 a^3} \]

Antiderivative was successfully verified.

[In]

Integrate[(a + b*x^2)^(9/2)/x^5,x]

[Out]

-1/11*(b^2*(a + b*x^2)^(11/2)*Hypergeometric2F1[3, 11/2, 13/2, 1 + (b*x^2)/a])/a^3

________________________________________________________________________________________

fricas [A]  time = 0.89, size = 192, normalized size = 1.52 \[ \left [\frac {315 \, a^{\frac {5}{2}} b^{2} x^{4} \log \left (-\frac {b x^{2} - 2 \, \sqrt {b x^{2} + a} \sqrt {a} + 2 \, a}{x^{2}}\right ) + 2 \, {\left (8 \, b^{4} x^{8} + 56 \, a b^{3} x^{6} + 288 \, a^{2} b^{2} x^{4} - 85 \, a^{3} b x^{2} - 10 \, a^{4}\right )} \sqrt {b x^{2} + a}}{80 \, x^{4}}, \frac {315 \, \sqrt {-a} a^{2} b^{2} x^{4} \arctan \left (\frac {\sqrt {-a}}{\sqrt {b x^{2} + a}}\right ) + {\left (8 \, b^{4} x^{8} + 56 \, a b^{3} x^{6} + 288 \, a^{2} b^{2} x^{4} - 85 \, a^{3} b x^{2} - 10 \, a^{4}\right )} \sqrt {b x^{2} + a}}{40 \, x^{4}}\right ] \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x^5,x, algorithm="fricas")

[Out]

[1/80*(315*a^(5/2)*b^2*x^4*log(-(b*x^2 - 2*sqrt(b*x^2 + a)*sqrt(a) + 2*a)/x^2) + 2*(8*b^4*x^8 + 56*a*b^3*x^6 +
 288*a^2*b^2*x^4 - 85*a^3*b*x^2 - 10*a^4)*sqrt(b*x^2 + a))/x^4, 1/40*(315*sqrt(-a)*a^2*b^2*x^4*arctan(sqrt(-a)
/sqrt(b*x^2 + a)) + (8*b^4*x^8 + 56*a*b^3*x^6 + 288*a^2*b^2*x^4 - 85*a^3*b*x^2 - 10*a^4)*sqrt(b*x^2 + a))/x^4]

________________________________________________________________________________________

giac [A]  time = 1.15, size = 124, normalized size = 0.98 \[ \frac {\frac {315 \, a^{3} b^{3} \arctan \left (\frac {\sqrt {b x^{2} + a}}{\sqrt {-a}}\right )}{\sqrt {-a}} + 8 \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{3} + 40 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} a b^{3} + 240 \, \sqrt {b x^{2} + a} a^{2} b^{3} - \frac {5 \, {\left (17 \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} a^{3} b^{3} - 15 \, \sqrt {b x^{2} + a} a^{4} b^{3}\right )}}{b^{2} x^{4}}}{40 \, b} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x^5,x, algorithm="giac")

[Out]

1/40*(315*a^3*b^3*arctan(sqrt(b*x^2 + a)/sqrt(-a))/sqrt(-a) + 8*(b*x^2 + a)^(5/2)*b^3 + 40*(b*x^2 + a)^(3/2)*a
*b^3 + 240*sqrt(b*x^2 + a)*a^2*b^3 - 5*(17*(b*x^2 + a)^(3/2)*a^3*b^3 - 15*sqrt(b*x^2 + a)*a^4*b^3)/(b^2*x^4))/
b

________________________________________________________________________________________

maple [A]  time = 0.01, size = 148, normalized size = 1.17 \[ -\frac {63 a^{\frac {5}{2}} b^{2} \ln \left (\frac {2 a +2 \sqrt {b \,x^{2}+a}\, \sqrt {a}}{x}\right )}{8}+\frac {63 \sqrt {b \,x^{2}+a}\, a^{2} b^{2}}{8}+\frac {21 \left (b \,x^{2}+a \right )^{\frac {3}{2}} a \,b^{2}}{8}+\frac {63 \left (b \,x^{2}+a \right )^{\frac {5}{2}} b^{2}}{40}+\frac {9 \left (b \,x^{2}+a \right )^{\frac {7}{2}} b^{2}}{8 a}+\frac {7 \left (b \,x^{2}+a \right )^{\frac {9}{2}} b^{2}}{8 a^{2}}-\frac {7 \left (b \,x^{2}+a \right )^{\frac {11}{2}} b}{8 a^{2} x^{2}}-\frac {\left (b \,x^{2}+a \right )^{\frac {11}{2}}}{4 a \,x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((b*x^2+a)^(9/2)/x^5,x)

[Out]

-1/4/a/x^4*(b*x^2+a)^(11/2)-7/8/a^2*b/x^2*(b*x^2+a)^(11/2)+7/8/a^2*b^2*(b*x^2+a)^(9/2)+9/8/a*b^2*(b*x^2+a)^(7/
2)+63/40*b^2*(b*x^2+a)^(5/2)+21/8*a*b^2*(b*x^2+a)^(3/2)-63/8*a^(5/2)*b^2*ln((2*a+2*(b*x^2+a)^(1/2)*a^(1/2))/x)
+63/8*a^2*b^2*(b*x^2+a)^(1/2)

________________________________________________________________________________________

maxima [A]  time = 1.46, size = 136, normalized size = 1.08 \[ -\frac {63}{8} \, a^{\frac {5}{2}} b^{2} \operatorname {arsinh}\left (\frac {a}{\sqrt {a b} {\left | x \right |}}\right ) + \frac {63}{40} \, {\left (b x^{2} + a\right )}^{\frac {5}{2}} b^{2} + \frac {7 \, {\left (b x^{2} + a\right )}^{\frac {9}{2}} b^{2}}{8 \, a^{2}} + \frac {9 \, {\left (b x^{2} + a\right )}^{\frac {7}{2}} b^{2}}{8 \, a} + \frac {21}{8} \, {\left (b x^{2} + a\right )}^{\frac {3}{2}} a b^{2} + \frac {63}{8} \, \sqrt {b x^{2} + a} a^{2} b^{2} - \frac {7 \, {\left (b x^{2} + a\right )}^{\frac {11}{2}} b}{8 \, a^{2} x^{2}} - \frac {{\left (b x^{2} + a\right )}^{\frac {11}{2}}}{4 \, a x^{4}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x^2+a)^(9/2)/x^5,x, algorithm="maxima")

[Out]

-63/8*a^(5/2)*b^2*arcsinh(a/(sqrt(a*b)*abs(x))) + 63/40*(b*x^2 + a)^(5/2)*b^2 + 7/8*(b*x^2 + a)^(9/2)*b^2/a^2
+ 9/8*(b*x^2 + a)^(7/2)*b^2/a + 21/8*(b*x^2 + a)^(3/2)*a*b^2 + 63/8*sqrt(b*x^2 + a)*a^2*b^2 - 7/8*(b*x^2 + a)^
(11/2)*b/(a^2*x^2) - 1/4*(b*x^2 + a)^(11/2)/(a*x^4)

________________________________________________________________________________________

mupad [B]  time = 5.65, size = 132, normalized size = 1.05 \[ \frac {\frac {15\,a^4\,b^2\,\sqrt {b\,x^2+a}}{8}-\frac {17\,a^3\,b^2\,{\left (b\,x^2+a\right )}^{3/2}}{8}}{{\left (b\,x^2+a\right )}^2-2\,a\,\left (b\,x^2+a\right )+a^2}+\frac {b^2\,{\left (b\,x^2+a\right )}^{5/2}}{5}+a\,b^2\,{\left (b\,x^2+a\right )}^{3/2}+6\,a^2\,b^2\,\sqrt {b\,x^2+a}+\frac {a^{5/2}\,b^2\,\mathrm {atan}\left (\frac {\sqrt {b\,x^2+a}\,1{}\mathrm {i}}{\sqrt {a}}\right )\,63{}\mathrm {i}}{8} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((a + b*x^2)^(9/2)/x^5,x)

[Out]

((15*a^4*b^2*(a + b*x^2)^(1/2))/8 - (17*a^3*b^2*(a + b*x^2)^(3/2))/8)/((a + b*x^2)^2 - 2*a*(a + b*x^2) + a^2)
+ (b^2*(a + b*x^2)^(5/2))/5 + (a^(5/2)*b^2*atan(((a + b*x^2)^(1/2)*1i)/a^(1/2))*63i)/8 + a*b^2*(a + b*x^2)^(3/
2) + 6*a^2*b^2*(a + b*x^2)^(1/2)

________________________________________________________________________________________

sympy [A]  time = 8.73, size = 175, normalized size = 1.39 \[ - \frac {63 a^{\frac {5}{2}} b^{2} \operatorname {asinh}{\left (\frac {\sqrt {a}}{\sqrt {b} x} \right )}}{8} - \frac {a^{5}}{4 \sqrt {b} x^{5} \sqrt {\frac {a}{b x^{2}} + 1}} - \frac {19 a^{4} \sqrt {b}}{8 x^{3} \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {203 a^{3} b^{\frac {3}{2}}}{40 x \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {43 a^{2} b^{\frac {5}{2}} x}{5 \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {8 a b^{\frac {7}{2}} x^{3}}{5 \sqrt {\frac {a}{b x^{2}} + 1}} + \frac {b^{\frac {9}{2}} x^{5}}{5 \sqrt {\frac {a}{b x^{2}} + 1}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((b*x**2+a)**(9/2)/x**5,x)

[Out]

-63*a**(5/2)*b**2*asinh(sqrt(a)/(sqrt(b)*x))/8 - a**5/(4*sqrt(b)*x**5*sqrt(a/(b*x**2) + 1)) - 19*a**4*sqrt(b)/
(8*x**3*sqrt(a/(b*x**2) + 1)) + 203*a**3*b**(3/2)/(40*x*sqrt(a/(b*x**2) + 1)) + 43*a**2*b**(5/2)*x/(5*sqrt(a/(
b*x**2) + 1)) + 8*a*b**(7/2)*x**3/(5*sqrt(a/(b*x**2) + 1)) + b**(9/2)*x**5/(5*sqrt(a/(b*x**2) + 1))

________________________________________________________________________________________